Home
Class 11
MATHS
[" Prove that : "],[" (i) "tan^(-1)x+cot...

[" Prove that : "],[" (i) "tan^(-1)x+cot^(-1)y=tan]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove the "tan"("tan"^(-1)x +"tan"^(-1) y + "tan"^(-1)z)="cot"("cot"^-1x +"cot"^(-1) y+"cot"^(-1) z)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)