Home
Class 14
MATHS
I=int(0)^((pi)/(2))log(1+tan theta)dx...

I=int_(0)^((pi)/(2))log(1+tan theta)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

STATEMENT 1: int_(0)^((pi)/(4))log(1+tan theta)d theta=(pi)/(8)log2 STATEMENT 2:int_(0)^((pi)/(2))log sin theta d theta=-pi log2

Evaluate : int_(0)^((pi)/(4)) log(1+tan theta ) d theta

int_(0)^((pi)/(2))log(tan x)*dx

Evaluate int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate :int_(0)^((pi)/(4))log(1+tan x)dx

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

int_(0)^((pi)/(4))log(sin2 theta)d theta=-((pi)/(4))log((1)/(2))

The value of int_(0)^(pi//4) log (1+ tan theta ) d theta is equal to

The value of int_(0)^(pi//4) log (1+ tan theta ) d theta is equal to

int_ (0) ^ ((pi) / (4)) log (1 + tan theta) dth eta