Home
Class 12
MATHS
int (0)^(pi//4) sec^(7) theta sin^(3) th...

` int _(0)^(pi//4) sec^(7) theta sin^(3) theta d theta ` is equal to

A

`(1)/(12)`

B

`(3)/(12)`

C

`(5)/(12)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \sec^7 \theta \sin^3 \theta \, d\theta, \] we can follow these steps: ### Step 1: Rewrite the integral We know that \(\sec \theta = \frac{1}{\cos \theta}\), so we can rewrite \(\sec^7 \theta\) as \(\frac{1}{\cos^7 \theta}\). Therefore, we have: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin^3 \theta}{\cos^7 \theta} \, d\theta. \] ### Step 2: Express \(\sin^3 \theta\) in terms of \(\tan \theta\) Using the identity \(\sin \theta = \tan \theta \cos \theta\), we can express \(\sin^3 \theta\) as: \[ \sin^3 \theta = \tan^3 \theta \cos^3 \theta. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{4}} \tan^3 \theta \cdot \frac{\cos^3 \theta}{\cos^7 \theta} \, d\theta = \int_{0}^{\frac{\pi}{4}} \tan^3 \theta \sec^4 \theta \, d\theta. \] ### Step 3: Use substitution Let \(t = \tan \theta\). Then, the derivative \(dt = \sec^2 \theta \, d\theta\) implies \(d\theta = \frac{dt}{\sec^2 \theta}\). When \(\theta = 0\), \(t = 0\) and when \(\theta = \frac{\pi}{4}\), \(t = 1\). Therefore, we can change the limits of integration: \[ I = \int_{0}^{1} t^3 \sec^4(\tan^{-1} t) \cdot \frac{dt}{\sec^2(\tan^{-1} t)}. \] ### Step 4: Simplify the integral Using the identity \(\sec^2(\tan^{-1} t) = 1 + t^2\), we have: \[ \sec^4(\tan^{-1} t) = (1 + t^2)^2. \] Thus, the integral becomes: \[ I = \int_{0}^{1} t^3 (1 + t^2)^2 \, dt. \] ### Step 5: Expand and integrate Expanding \((1 + t^2)^2\): \[ (1 + t^2)^2 = 1 + 2t^2 + t^4. \] So, we have: \[ I = \int_{0}^{1} t^3 (1 + 2t^2 + t^4) \, dt = \int_{0}^{1} (t^3 + 2t^5 + t^7) \, dt. \] Now, we can integrate term by term: \[ I = \left[ \frac{t^4}{4} + \frac{2t^6}{6} + \frac{t^8}{8} \right]_{0}^{1} = \frac{1}{4} + \frac{1}{3} + \frac{1}{8}. \] ### Step 6: Find a common denominator and sum The common denominator for \(4\), \(3\), and \(8\) is \(24\): \[ I = \frac{6}{24} + \frac{8}{24} + \frac{3}{24} = \frac{17}{24}. \] Thus, the final answer is: \[ I = \frac{17}{24}. \]

To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \sec^7 \theta \sin^3 \theta \, d\theta, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

If int_(-3 pi)^(3 pi)sin^(2)theta sin^(2)(2 theta)d theta is equal to (k pi)/(4), then value of k is

If int_(-3 pi)^(3 pi)sin^(2)theta sin^(2)(2 theta)d theta is equal to (k pi)/(4), then value of k is

int_(0)^((pi)/(4))theta sec^(2)theta d theta

int_(0)^(pi//2) (cos theta)/(sqrt(4-sin^(2)theta))d theta is equal to

int _(0) ^(pi) sin ^(2) theta cos theta d theta

int_(0)^((pi)/(4))cos^((3)/(2))2 theta cos theta d theta equals

int_(0)^((pi)/(2))sin^(2)theta cos^(6)theta d theta equals

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int (0)^(pi//4) sec^(7) theta sin^(3) theta d theta is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |