Home
Class 12
MATHS
int (0)^(1) x^(3//2) sqrt(1-x) dx is e...

` int _(0)^(1) x^(3//2) sqrt(1-x) dx ` is equal to

A

`pi/6`

B

`pi/9`

C

`pi/12`

D

`pi/16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 x^{\frac{3}{2}} \sqrt{1-x} \, dx \), we can use the substitution method. Here are the steps to find the solution: ### Step 1: Substitution Let \( x = \sin^2 \theta \). Then, we have: \[ dx = 2 \sin \theta \cos \theta \, d\theta = \sin(2\theta) \, d\theta \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ \sin^2 \theta = 0 \implies \theta = 0 \] When \( x = 1 \): \[ \sin^2 \theta = 1 \implies \theta = \frac{\pi}{2} \] Thus, the limits change from \( 0 \) to \( \frac{\pi}{2} \). ### Step 3: Substitute into the integral Now substitute \( x \) and \( dx \) into the integral: \[ \int_0^1 x^{\frac{3}{2}} \sqrt{1-x} \, dx = \int_0^{\frac{\pi}{2}} (\sin^2 \theta)^{\frac{3}{2}} \sqrt{1 - \sin^2 \theta} \cdot \sin(2\theta) \, d\theta \] This simplifies to: \[ = \int_0^{\frac{\pi}{2}} \sin^3 \theta \cdot \cos \theta \cdot \sin(2\theta) \, d\theta \] Since \( \sin(2\theta) = 2 \sin \theta \cos \theta \), we can rewrite the integral as: \[ = 2 \int_0^{\frac{\pi}{2}} \sin^4 \theta \cos^2 \theta \, d\theta \] ### Step 4: Simplifying the integral Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can express the integral as: \[ = 2 \int_0^{\frac{\pi}{2}} \sin^4 \theta (1 - \sin^2 \theta) \, d\theta \] This expands to: \[ = 2 \left( \int_0^{\frac{\pi}{2}} \sin^4 \theta \, d\theta - \int_0^{\frac{\pi}{2}} \sin^6 \theta \, d\theta \right) \] ### Step 5: Evaluating the integrals Using the Beta function, we know: \[ \int_0^{\frac{\pi}{2}} \sin^{2n} \theta \, d\theta = \frac{1}{2} B(n + \frac{1}{2}, \frac{1}{2}) = \frac{1}{2} \cdot \frac{\Gamma(n + \frac{1}{2}) \Gamma(\frac{1}{2})}{\Gamma(n + 1)} \] Calculating for \( n = 2 \) and \( n = 3 \): \[ \int_0^{\frac{\pi}{2}} \sin^4 \theta \, d\theta = \frac{3}{8} \cdot \frac{\pi}{2} = \frac{3\pi}{16} \] \[ \int_0^{\frac{\pi}{2}} \sin^6 \theta \, d\theta = \frac{5}{16} \cdot \frac{\pi}{2} = \frac{5\pi}{32} \] ### Step 6: Combine the results Substituting these values back: \[ = 2 \left( \frac{3\pi}{16} - \frac{5\pi}{32} \right) \] Finding a common denominator: \[ = 2 \left( \frac{6\pi}{32} - \frac{5\pi}{32} \right) = 2 \cdot \frac{\pi}{32} = \frac{\pi}{16} \] ### Final Answer Thus, the value of the integral \( \int_0^1 x^{\frac{3}{2}} \sqrt{1-x} \, dx \) is: \[ \frac{\pi}{16} \]

To solve the integral \( \int_0^1 x^{\frac{3}{2}} \sqrt{1-x} \, dx \), we can use the substitution method. Here are the steps to find the solution: ### Step 1: Substitution Let \( x = \sin^2 \theta \). Then, we have: \[ dx = 2 \sin \theta \cos \theta \, d\theta = \sin(2\theta) \, d\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(3)sqrt(1-x^(2))dx=

int_(0)^(1)x^(3)sqrt(1-x^(2))dx=

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

int(x^(2)+1)sqrt(x+1)dx is equal to

int_(0)^(1)(dx)/(3sqrt(x))

int_(0)^(1)sqrt((x)/(1-x^(3))) dx=

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. The value of int(0)^((pi)/(8))cos^(3)4 theta d theta is equal to -

    Text Solution

    |

  2. int (0)^(pi//3) (cos x + sin x)/(sqrt(1+sin 2x))dx is equal to

    Text Solution

    |

  3. int (0)^(1) x^(3//2) sqrt(1-x) dx is equal to

    Text Solution

    |

  4. The value of int (1)^(2) (dx)/((x+1) sqrt((x^2)-1)) is

    Text Solution

    |

  5. If f(x)=|(sin x+sin x 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,...

    Text Solution

    |

  6. int (-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

    Text Solution

    |

  7. underset(n to oo)lim((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to

    Text Solution

    |

  8. Let f (x) = x – [x], for every real number x, where [x] is the greates...

    Text Solution

    |

  9. The value of int (0)^(1) (x^(4) +1)/(x^(2)+1)dx is

    Text Solution

    |

  10. The value of overset(5)underset(3)int (x^(2))/(x^(2)-4)dx, is

    Text Solution

    |

  11. The value of int (0)^(pi//2) ((sin x + cos x)^(2))/(sqrt(1+sin 2x) dx...

    Text Solution

    |

  12. int (0)^(a) sqrt(a^(2) - x^(2)) dx is equal to

    Text Solution

    |

  13. The value of int(e^(-1))^(e) (dt)/(t(t+1)) is equal to

    Text Solution

    |

  14. The value of int (1)^(e) 10^(log(e)x) dx is equal to

    Text Solution

    |

  15. If int (2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then

    Text Solution

    |

  16. int (0)^(oo) (dx)/((x+ sqrt(x^(2)+1))^(3)) is equal to

    Text Solution

    |

  17. The value of the integral int (-pi//2)^(pi//2) sqrt(cos x - cos ^(3) ...

    Text Solution

    |

  18. The value of I=overset(0)underset(-2)int{x^(3)+3x^(2)+3x+3+(x+1)cos(...

    Text Solution

    |

  19. int (alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

    Text Solution

    |

  20. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |