Home
Class 12
MATHS
The value of int0^oox/((1+x)(x^2+1))dx i...

The value of `int_0^oox/((1+x)(x^2+1))dx` is

A

`2pi`

B

`pi/4`

C

`pi/16`

D

`pi/32`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `l = int_(0)^(oo) (x dx)/((1+x)(x^(2)+1))`
By Partial fraction,
`(x)/((1+x)(x^(2)+1))=(A)/((1+x))+(Bx+C)/((x^(2)+1))`
`rArr x=A(x^(2)+1)+(1+x)(Bx+C)`
`rArr x=A(x^(2)+1)+(Bx+Bx^(2)+C+Cx)`
`rArr x =(A+B)x^(2)+(B+C)x +(A+C)`
On comparing both sodes, we get
`A+B=0, B+C=1, A+C=0` ...(i)
On adding all these equations, we get
`A+B+C=(1)/(2)` ...(ii)
`therefore A=(1)/(2)-1=-(1)/(2),C=(1)/(2)` and `B=(1)/(2)`
Then, `l=int_(0)^(oo){(-1)/(2(1+x))+(1)/(2)((x+1))/((x^(2)+1))}dx`
`=-(1)/(2)int_(0)^(oo)(dx)/(1+x)+(1)/(2)int_(0)^(oo)(x)/(x^(2)+1)dx +(1)/(2)int_(0)^(oo)(dx)/(1+x^(2))`
`=-(1)/(2)[log(1+x)]_(0)^(oo)+(1)/(4)[log(x^(2)+1)]_(0)^(oo)+(1)/(2)xx(pi)/(2)`
`=-(1)/(2)lim_(x to oo)log (1+x)+(1)/(4) lim_(x to oo)log (1+x^(2))+(pi)/(4)`
`= lim_(x to oo)log [((1+x^(2))^(1//4))/((1+x)^(1//2))]+(pi)/(4)`
`= lim_(x to oo)log [(sqrt(x)((1)/(x^(2))+1)^(1//4))/(sqrt(x)((1)/(x)+1)^(1//2))]+(pi)/(4)`
`= log. ((0+1)^(1//4))/((0+1)^(1//2))+(pi)/(4)`
`= log (1) +(pi)/(4)=0+(pi)/(4)=(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^oox^(2n+1)dote^(-x^2)dx is (n in W)

The value of int_0^1 (x^(3))/(1+x^(8))dx is

The value of int_0^(10) (x +(1)/(x)) dx is

The value of the integral int_0^oox/((1+x)(1+x^2))dx is (pi^)/2 (b) (pi^)/4 (c) (pi^)/6 (d) pi/3

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a