Home
Class 11
MATHS
Number of principle solution(s) of the e...

Number of principle solution(s) of the equation `4.16^(sin^(2)x) = 2^(6sinx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of principal solution(s) of the equation 4-16^( sin ^(2)x)=2^(6sin x) is (A)1(B)2(C)3(D)4

Number of solutions(s) of the equation sin x=[x]

The solutions of the equation sin^2x+3sinx=0 is:

The solutions of the equation 4cos^(2) + 6 sin^(2) x =5 are

Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6

Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6

Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6

Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6

The number of solutions of the equation 16^(sin^(2)x)+16^(cos^(2)x)=10,x in[0,3pi] is …………..

Number of solutions of the equation 2(sin^(-1)x)^2-sin^(-1)x-6=0 is