Home
Class 12
MATHS
y=[log(x+sqrt(x^(2)+1))]^(-(2))...

y=[log(x+sqrt(x^(2)+1))]^(-(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=[log(x+sqrt(1+x^(2)))]^(2) , show that : (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)-2=0 .

If y = log (x + sqrt(x ^(2) + 1)) then y _(2)(1) =

If y= log (x + sqrt(x ^(2) -1)) then, y _(2) (sqrt2) =

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

IF y =[log (x+ sqrt(1+ x^2))]^2 ,show that (1+ x^2) (d^2y) /dx^2 +x(dy/dx) =0

If y=log(sqrt(x+sqrt(x^(2)+a^(2))))" then: "(dy)/(dx)=

Differentiate y=log(x+sqrt(x^2+1))

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0