Home
Class 12
MATHS
int(0)^(1)x^(3)sqrt(1-x^(2))dx=...

`int_(0)^(1)x^(3)sqrt(1-x^(2))dx=`

A

`(1)/(15)`

B

`(22)/(15)`

C

`(4)/(15)`

D

`(2)/(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} x^{3} \sqrt{1 - x^{2}} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int_{0}^{1} x^{3} \sqrt{1 - x^{2}} \, dx \] We can rewrite \( x^{3} \) as \( x \cdot x^{2} \) and factor out \( \sqrt{1 - x^{2}} \): \[ = \int_{0}^{1} x \cdot x^{2} \sqrt{1 - x^{2}} \, dx \] ### Step 2: Use substitution Let us use the substitution \( t^{2} = 1 - x^{2} \). Then, differentiating both sides gives: \[ -2x \, dx = 2t \, dt \quad \Rightarrow \quad x \, dx = -t \, dt \] We also need to change the limits of integration. When \( x = 0 \), \( t = 1 \) and when \( x = 1 \), \( t = 0 \). Thus, the limits change from \( 0 \) to \( 1 \) into \( 1 \) to \( 0 \). ### Step 3: Substitute in the integral Substituting \( x^{2} = 1 - t^{2} \) and \( x \, dx = -t \, dt \): \[ = \int_{1}^{0} (1 - t^{2}) \sqrt{t^{2}} (-t) \, dt \] This simplifies to: \[ = \int_{1}^{0} (1 - t^{2}) t (-t) \, dt = \int_{1}^{0} -t^{2} (1 - t^{2}) \, dt \] Reversing the limits gives: \[ = \int_{0}^{1} t^{2} (1 - t^{2}) \, dt \] ### Step 4: Expand the integrand Now, we expand the integrand: \[ = \int_{0}^{1} (t^{2} - t^{4}) \, dt \] ### Step 5: Integrate term by term Now we can integrate each term: \[ = \left[ \frac{t^{3}}{3} - \frac{t^{5}}{5} \right]_{0}^{1} \] Calculating this gives: \[ = \left( \frac{1^{3}}{3} - \frac{1^{5}}{5} \right) - \left( \frac{0^{3}}{3} - \frac{0^{5}}{5} \right) \] \[ = \frac{1}{3} - \frac{1}{5} \] ### Step 6: Find a common denominator and simplify To combine these fractions, we find a common denominator: \[ = \frac{5}{15} - \frac{3}{15} = \frac{2}{15} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} x^{3} \sqrt{1 - x^{2}} \, dx = \frac{2}{15} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

int_(0)^(1)(x)/(sqrt(1-x^(2)))dx=

int_(0)^(1)x sqrt(1-x^(2))dx

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int_(0)^(1)(x-5)sqrt(x^(2)+x)dx

int_(0)^(1) (x)/(sqrt(1+x^(2)))dx=?

int_(0)^(1)(sqrt(x))/(1+x^(2))dx

Evaluate : int_(0)^(1) (x)/(sqrt(1+x^(2)))dx

Evaluate the following : int_(0)^(a)x^(2)sqrt(1-x)dx

int_(0)^(3)5sqrt(1-(x^(2))/(9))dx