Home
Class 12
MATHS
int(0)^(pi//2)x sin x dx=...

`int_(0)^(pi//2)x sin x dx=`

A

`(pi)/(2)`

B

`-pi`

C

`-2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} x \sin x \, dx \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Identify the functions for integration by parts**: We choose: - \( u = x \) (first function) - \( dv = \sin x \, dx \) (second function) 2. **Differentiate and integrate**: - Differentiate \( u \): \[ du = dx \] - Integrate \( dv \): \[ v = -\cos x \] 3. **Apply the integration by parts formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int x \sin x \, dx = x(-\cos x) - \int (-\cos x) \, dx \] This simplifies to: \[ -x \cos x + \int \cos x \, dx \] 4. **Integrate \( \cos x \)**: The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x \] Therefore, we have: \[ -x \cos x + \sin x \] 5. **Evaluate the definite integral from 0 to \( \frac{\pi}{2} \)**: Now we need to evaluate: \[ \left[-x \cos x + \sin x\right]_{0}^{\frac{\pi}{2}} \] First, we evaluate at the upper limit \( x = \frac{\pi}{2} \): \[ -\left(\frac{\pi}{2}\right) \cos\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right) = -\left(\frac{\pi}{2}\right) \cdot 0 + 1 = 1 \] Next, we evaluate at the lower limit \( x = 0 \): \[ -0 \cdot \cos(0) + \sin(0) = 0 + 0 = 0 \] 6. **Combine the results**: Now, we subtract the lower limit result from the upper limit result: \[ 1 - 0 = 1 \] ### Final Answer: Thus, the value of the integral \( \int_{0}^{\frac{\pi}{2}} x \sin x \, dx \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)x sin^(2)x dx=

int_(0)^(pi//2) x^(2) sin x " " dx=

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(pi//2) x sin x cos x dx

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//2)sin x.sin 2x dx=

int_0^(pi/2) sin x sin 2x dx