Home
Class 12
MATHS
int(0)^(pi//2)(1)/(2+cos x)dx=...

`int_(0)^(pi//2)(1)/(2+cos x)dx=`

A

`(pi)/(3)`

B

`(pi)/(3sqrt(3))`

C

`(pi)/(sqrt(3))`

D

`(pi)/(2sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{2 + \cos x} \, dx, \] we can use a trigonometric substitution. ### Step 1: Rewrite the cosine function We can express \(\cos x\) in terms of the tangent function. Using the identity: \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}, \] we substitute this into the integral. ### Step 2: Substitute into the integral Substituting \(\cos x\) gives us: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{2 + \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}} \, dx. \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1 + \tan^2\left(\frac{x}{2}\right)}{2(1 + \tan^2\left(\frac{x}{2}\right)) + 1 - \tan^2\left(\frac{x}{2}\right)} \, dx. \] ### Step 3: Simplify the expression The denominator simplifies to: \[ 2(1 + \tan^2\left(\frac{x}{2}\right)) + 1 - \tan^2\left(\frac{x}{2}\right) = 3 + \tan^2\left(\frac{x}{2}\right). \] Thus, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1 + \tan^2\left(\frac{x}{2}\right)}{3 + \tan^2\left(\frac{x}{2}\right)} \, dx. \] ### Step 4: Change of variable Let \( t = \tan\left(\frac{x}{2}\right) \). Then, \( dx = \frac{2}{1 + t^2} dt \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \) which corresponds to \( t = 0 \) to \( t = 1 \). ### Step 5: Substitute and integrate Now substituting \( dx \) and changing the limits gives: \[ I = \int_{0}^{1} \frac{1 + t^2}{3 + t^2} \cdot \frac{2}{1 + t^2} dt = 2 \int_{0}^{1} \frac{1}{3 + t^2} dt. \] ### Step 6: Evaluate the integral Now we can evaluate: \[ \int \frac{1}{3 + t^2} dt = \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right). \] Thus, \[ I = 2 \cdot \left[ \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right) \right]_{0}^{1} = 2 \cdot \frac{1}{\sqrt{3}} \left( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \tan^{-1}(0) \right). \] ### Step 7: Final evaluation Since \(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}\) and \(\tan^{-1}(0) = 0\), we have: \[ I = 2 \cdot \frac{1}{\sqrt{3}} \cdot \frac{\pi}{6} = \frac{\pi}{3\sqrt{3}}. \] ### Final Answer Thus, the final result is: \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{2 + \cos x} \, dx = \frac{\pi}{3\sqrt{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/(5+4cos x)dx=

int_(0)^(pi/2)(1)/(6-cos x)dx

int_(0)^(pi) (1)/(5+2 cos x)dx

Evaluate: int_(0)^( pi/2)(1)/(3+2cos x)dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^(pi/2)(x)/(1+cos x)dx =

int_(0)^(pi//2) (dx)/(1+2 cos x)

int_(0)^(pi//4) (1)/(1+cos 2x)dx

int_(0)^(pi//2) x^(2) cos x dx

If int_(0)^( pi)(1)/(a+b cos x)dx=(pi)/(sqrt(a^(2)-b^(2))), then int_(0)^( pi)(1)/((a+b cos x)^(2))dx is