Home
Class 12
MATHS
int(0)^(pi)(x sin x)/(1-sin x)dx=...

`int_(0)^(pi)(x sin x)/(1-sin x)dx=`

A

`pi.log4`

B

`pi log 2`

C

2 log 2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{x \sin x}{1 - \sin x} \, dx \), we will use the property of definite integrals. ### Step 1: Apply the property of definite integrals Using the property: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] we can rewrite our integral: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 - \sin(\pi - x)} \, dx \] Since \( \sin(\pi - x) = \sin x \), we can simplify this to: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 - \sin x} \, dx \] ### Step 2: Combine the two integrals Now we have two expressions for \( I \): \[ I = \int_{0}^{\pi} \frac{x \sin x}{1 - \sin x} \, dx \] \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 - \sin x} \, dx \] Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \frac{(\pi \sin x)}{1 - \sin x} \, dx \] Thus, \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{\pi \sin x}{1 - \sin x} \, dx \] ### Step 3: Simplify the integral Now we need to evaluate the integral: \[ \int_{0}^{\pi} \frac{\sin x}{1 - \sin x} \, dx \] To do this, we will rationalize the integrand by multiplying the numerator and denominator by \( 1 + \sin x \): \[ \int_{0}^{\pi} \frac{\sin x (1 + \sin x)}{(1 - \sin x)(1 + \sin x)} \, dx = \int_{0}^{\pi} \frac{\sin x (1 + \sin x)}{\cos^2 x} \, dx \] ### Step 4: Separate the integral This can be separated into two integrals: \[ \int_{0}^{\pi} \frac{\sin x}{\cos^2 x} \, dx + \int_{0}^{\pi} \frac{\sin^2 x}{\cos^2 x} \, dx \] The first integral can be rewritten using the substitution \( t = \cos x \), where \( dt = -\sin x \, dx \): \[ \int_{0}^{\pi} \frac{\sin x}{\cos^2 x} \, dx = -\int_{1}^{-1} \frac{1}{t^2} \, dt = \left[ \frac{1}{t} \right]_{1}^{-1} = 1 - (-1) = 2 \] ### Step 5: Evaluate the second integral The second integral is: \[ \int_{0}^{\pi} \tan^2 x \, dx \] This integral can be evaluated as: \[ \int_{0}^{\pi} \tan^2 x \, dx = \int_{0}^{\pi} \sec^2 x \, dx - \int_{0}^{\pi} 1 \, dx = [\tan x]_{0}^{\pi} - [x]_{0}^{\pi} = 0 - \pi = -\pi \] ### Step 6: Combine results Now we can combine the results: \[ \int_{0}^{\pi} \frac{\sin x}{1 - \sin x} \, dx = 2 - \pi \] Thus, \[ I = \frac{1}{2} \cdot \pi (2 - \pi) = \pi - \frac{\pi^2}{2} \] ### Final Answer Therefore, the value of the integral is: \[ I = \pi - \frac{\pi^2}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cos x)/(1-sin^(m)x)dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^(pi) sin 3x dx

" 2."int_(0)^( pi)(x)/(1+sin x)dx

int_(0)^(pi/2) sin^(-1)(sin x)dx

int_(0)^( pi)(x)/((1+sin^(2)x))dx

int_(0)^( pi/2)(sin x)*dx

int_(0)^(2pi) (sin x-|sin x|) dx equal to

int_(0)^( pi)(x)/(1+sin x)dx