Home
Class 12
MATHS
a^(x)(y^(2)+1)dx=ydyA)a^(x)=tan^(-1)y+c ...

`a^(x)(y^(2)+1)dx=ydy`A)`a^(x)=tan^(-1)y+c` B)`tan^(-1)y=a^(x)log_(a)e+c` C)`a^(x)log_(a)e=log(y^(2)+1)+c` D)`(a^(x))/(loga)=logsqrt(y^(2)+1)+c`

A

`a^(x)=tan^(-1)y+c`

B

`tan^(-1)y=a^(x)log_(a)e+c`

C

`a^(x)log_(a)e=log(y^(2)+1)+c`

D

`(a^(x))/(loga)=logsqrt(y^(2)+1)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)) is (A)tan^(-1)((x)/(y))^(2)=log y+c(B)tan^(-1)((y)/(x))=log x+c(C)tan^(-1)((x)/(y))=log x+c(D)tan^(-1)((y)/(x))=log y+c

If tan^(-1)((y)/(x))-(1)/(2)log_(a)(x^(2)+y^(2))=0, then (dy)/(dx) is

y^(2)-(dy)/(dx)=x^(2)(dy)/(dx) A) y^(-1)+tan^(-1)x=c B) x^(-1)+tan^(-1)y=c C) y+tan^(-1)x=c D) x^(-1)+y^(-1)=tan^(-1)x+c

(x^(2)-x^(2)y)(dy)/(dx)+y^(2)+x^(2)y^(2)=0 A) x-(x^(-1)+y^(-1))-logy=c B) x+(x^(-1)-y^(-1))=log(cy) C) x^(2)+xy+log((y)/(x))=c D) (x^(-1)-y^(-1))+logy=x+c

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)), is tan^(-1)((x)/(y))^(2)=log y+Ctan^(-1)((y)/(x))=log x+Ctan^(-1)((x)/(y))=log x+Ctan^(-1)((y)/(x))=log y+C

f(x)=tan^(-1){(log((e)/(x^(2))))/(log(ex^(2)))}+tan^(-1)((3+2log x)/(1-6log x)) then find (d^(n)y)/(dx^(n))

sqrt(1-y^(2))dx-sqrt(1-x^(2))dy=0 A) sin^(-1)x-cos^(-1)y=c B) sin^(-1)x-sin^(-1)y=c C) log(x+sqrt(1-x^(2)))=log(y+sqrt(1-y^(2)))+c D) x-y=c(1+xy)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)