Home
Class 12
MATHS
int(1)^(2) sqrt(x)/ (sqrt(3-x) + sqrt(x)...

`int_(1)^(2) sqrt(x)/ (sqrt(3-x) + sqrt(x))dx=`

A

`(-1)/2`

B

`1/2`

C

`3/2`

D

`(-3)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} \, dx, \] we can use a property of definite integrals. The property states that if \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx, \] then we can replace \(x\) with \(3 - x\) in our integral. ### Step 1: Apply the property Let’s calculate \(I\) using the property: \[ I = \int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{3-(3-x)} + \sqrt{3-x}} \, dx = \int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{x} + \sqrt{3-x}} \, dx. \] ### Step 2: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} \, dx\) 2. \(I = \int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{x} + \sqrt{3-x}} \, dx\) Adding these two integrals gives: \[ 2I = \int_{1}^{2} \left( \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} + \frac{\sqrt{3-x}}{\sqrt{x} + \sqrt{3-x}} \right) \, dx. \] ### Step 3: Simplify the expression Notice that the denominators are the same, so we can combine the fractions: \[ 2I = \int_{1}^{2} \frac{\sqrt{x} + \sqrt{3-x}}{\sqrt{3-x} + \sqrt{x}} \, dx = \int_{1}^{2} 1 \, dx. \] ### Step 4: Evaluate the integral Now, we can evaluate the integral: \[ \int_{1}^{2} 1 \, dx = [x]_{1}^{2} = 2 - 1 = 1. \] ### Step 5: Solve for \(I\) Now we have: \[ 2I = 1 \implies I = \frac{1}{2}. \] ### Final Answer Thus, the value of the integral is \[ \int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} \, dx = \frac{1}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

I=int_(1)^(3)(sqrt(x))/(sqrt(4-x)+sqrt(x))dx=?

int_(1)^(4)(sqrt(x))/((sqrt(5-x)+sqrt(x)))dx=(3)/(2)

int(dx)/(sqrt(x+1)-sqrt(x))

int_(0)^(a)(sqrt(x))/((sqrt(x)+sqrt(a-x)))dx=(a)/(2)

int(dx)/(sqrt(x)sqrt(1-x))

int_(a)^(b)(sqrt(x))/(sqrt(x)+sqrt(a+b-x))dx= . . . .

The value of int_(2)^(3)(sqrt(x))/(sqrt(5-x)+sqrt(x))dx is

The value of int_(2)^(3)(sqrt(x))/(sqrt(5-x)+sqrt(x))dx is . . . . .

int(dx)/(sqrt(x)(1+sqrt(x)))

int(1/sqrt(x)-sqrt(x))dx

NIKITA PUBLICATION-DEFINITE INTEGRAL-MULTIPLE CHOICE QUESTIONS
  1. If int0^3 (3ax^2+2bx+c)dx=int1^3 (3ax^2+2bx+c)dx where a,b,c are const...

    Text Solution

    |

  2. Prove that int(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2).

    Text Solution

    |

  3. int(1)^(2) sqrt(x)/ (sqrt(3-x) + sqrt(x))dx=

    Text Solution

    |

  4. int(2)^(7) sqrt(x)/ (sqrt(x) + sqrt(9-x))dx=

    Text Solution

    |

  5. int(4)^(7)((11-x)^(2))/(x^(2)+(11-x)^(2))dx=

    Text Solution

    |

  6. int(0)^(pi//2) sin ^(2) x cos^(3) x" "dx =

    Text Solution

    |

  7. int(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

    Text Solution

    |

  8. int0^(pi/2) (sinx-cosx)/(1+sinxcosx) dx

    Text Solution

    |

  9. int(0)^(2pi) (sin 2 theta)/(a-b cos 2 theta )d theta =

    Text Solution

    |

  10. int(0) ^(pi//2) cos^(2) theta d theta =

    Text Solution

    |

  11. The value of the integral int (0)^(pi//2) (sin ^(100)x - cos^(100)x)...

    Text Solution

    |

  12. int(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

    Text Solution

    |

  13. int(pi/5)^(3pi/ 10)(sinx)/((sinx+cosx)dx

    Text Solution

    |

  14. int(0)^(pi//2) sqrt(sin x)/(sqrt(sin x ) + sqrt( cos x)) dx =

    Text Solution

    |

  15. Evaluate : int0^(pi/2)(dx)/(1+sqrt(tanx))

    Text Solution

    |

  16. Evaluate the following : int(pi//6)^(pi//3)(1)/(1+sqrt(cotx))dx

    Text Solution

    |

  17. Evaluate the following : int(0)^(pi//2)(root3(secx))/(root3(secx)+r...

    Text Solution

    |

  18. int(0) ^( pi//2) (root(n)(secx))/(root(n) (secx )+ root (n) ("cosec "x...

    Text Solution

    |

  19. int(0)^(pi//2) e^(x^(2))/(e^(x^(2)+ e^((pi/2-x)^(2))))dx=

    Text Solution

    |

  20. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |