Home
Class 12
MATHS
If I(m)=int(1)^(e)(log(e)x)^(m)dx, then ...

If `I_(m)=int_(1)^(e)(log_(e)x)^(m)dx`, then prove that, `I_(m)=e-mI_(m-1)`

Text Solution

Verified by Experts

The correct Answer is:
`int_(1)^(e)(log_(e)x)^(m-1)dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If I_(m)=int_(1)^(e )(log_(e)x)^(m)dx , then the value of (I_(m)+mI_(m-1)) is -

int_(1)^(e)(1+logx)/(x)dx

If I_(m)=int_(1)^(e)(logx)^(m)dx , show that, I_(m)+mI_(m-1)lt3 .

Evaluate: int_(1)^(e)(log_(e)x)^(3)dx

Given I_m=int_1^e(logx)^mdx ,then prove that (I_m)/(1-m)+m I_(m-2)=e

If I_(m)=int_(1)^(x)(logx)^(m)dx satisfies the relation I_(m)=x(logx)^(m)-l I_(m-1) , then which one of the following is correct ?

int_(1)^(e)(dx)/(x(1+logx))

Evaluate int(log_(e)x)^(2)dx

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If I_m=int_1^x(logx)^mdx satisfies the relation (I_m)=k-l I_(m-1) then