Home
Class 12
MATHS
If f(x)=f(a+x), then prove that, int(a)^...

If `f(x)=f(a+x)`, then prove that, `int_(a)^(a+t)f(x)dx` is independent of a.

Text Solution

Verified by Experts

The correct Answer is:
`int_(0)^(t)f(x)dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise MCQ EXERCISE 9A|15 Videos
  • DEFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise VERY SHORT QUESTIONS|24 Videos
  • COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2016)|3 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If f(x)=f(a+x) , then prove that the value of int_(a)^(a+t) f(x)dx is independent of a.

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

If f(x) is periodic function of period t show that int_(a)^(a+t)f(x)dx is independent of a.

If f(-x)=-f(x) , then the value of int_(-a)^af(x)dx is equal to

If f(x)=(|x-2|+|x-4|) , then evaluate int_(1)^(4)f(x)dx .

If f(a+b-x)=f(x), then prove that int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dxdot

If f(a+b-x)=f(x), then prove that int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dxdot

If y=f(x)=(ax-b)/(bx-a), prove that f(x).f(1/x) is independent of x.

If f(a+b-x)=f(x) , then int_(a)^(b) x f(x)dx is equal to -

If (d)/(dx)f(x)=g(x) , then the value of int_(a)^(b)f(x)g(x)dx is -