Home
Class 13
MATHS
" tha "int(1)/(1+sin x)dx=tan((x)/(2)+a)...

" tha "int(1)/(1+sin x)dx=tan((x)/(2)+a)+C" st,"pi

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(dx)/((1+sin x))=tan((x)/(2)+a)+b , then the value of -(2048a)/(pi) must be

int (1) / (tan x + sin x) dx

int (1) / (tan x + sin x) dx

int (1) / (tan x + sin x) dx

int (sin (tan^(-1)x)dx)/(1+x^(2))

If int dx/(1 + sin x) = tan(x/2 + a) + b then the value of -(16a)/pi must be

int{ln(1+sin x)+x tan((pi)/(4)-(x)/(2))}dx is int{ln(1+sin x)+x tan((pi)/(4)-(x)/(2))}dx is equal~ to(A)x ln(1+sin x)+C(B)ln(1+sin x)+C(C)-x ln(1+sin x)+C(D)ln(1-sin x)+C

If int (1)/( 2 + sin^(2) x ) dx = k. tan^(-1) ( l tan x ) + C then (k, l ) =

If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C , then :