Home
Class 12
MATHS
If P=21(21^(2)-1^(2))(21^(2)-2^(2))...(...

If `P=21(21^(2)-1^(2))(21^(2)-2^(2))...(21^(2)-10^(2))`, then p is divisible by-

A

`22!`

B

`21!`

C

`19!`

D

`20!`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams B (Integer Type )|5 Videos
  • PERMUTATION AND COMBINATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams D (Comprehension Type )|6 Videos
  • PERMUTATION AND COMBINATION

    CHHAYA PUBLICATION|Exercise EXERCISE 7B ( Long Answer Type Questions )|29 Videos
  • PARABOLA

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams ( E Assertion -Reason Type )|2 Videos
  • PLANE

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination( E Assertion - Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

If P = 21(21^2-1^2)(21^2-2^2)(21^2-3^2)...............(21^2-10^2),t h e nP is divisible by a. 22 ! b. 21 ! c. 19 ! d. 20!

21x^(2) - 28x + 10=0

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

If PxxQ={(2,-1),(3,0),(2,1),(3,1),(2,0),(3,-1)} , find P and Q.

If A=[(1,2),(2,3),(3,4)] and B=[(1,2),(2,1)] , then -

Show that sin^(2) 12^(@)+ sin ^(2)21^(@)+ sin ^(2)39^(@)+ sin^(2)48^(@)=1+ sin^(2)9^(@)+ sin^(2)18^(@)

The x-coordinates of the vertices of a square of unit area are the roots of the equation x^2-3|x|+2=0 . The y-coordinates of the vertices are the roots of the equation y^2-3y+2=0. Then the possible vertices of the square is/are (a)(1,1),(2,1),(2,2),(1,2) (b)(-1,1),(-2,1),(-2,2),(-1,2) (c)(2,1),(1,-1),(1,2),(2,2) (d)(-2,1),(-1,-1),(-1,2),(-2,2)

Let A=[(2,1),(0,3)] be a matrix. If A^(10)=[(a,b),(c,d)] then prove that a+d is divisible by 13.

If A={:[(1,2),(2,1)]:} and f(x)=x^(2)-2x-3, show that f(A) = 0.

Show that the matrix A = (1)/(3)[(1,2,2),(2,1,-2),(-2,2,-1)] is orthogonal, Hence, find A^(-1) .