Home
Class 12
MATHS
inte^(xloga).e^(x)dx is equal to...

`inte^(xloga).e^(x)dx` is equal to

A

`(ae)^(x)+c`

B

`((ae)^(x))/(1+loga)+c`

C

`(a^(x))/(1+loga)+c`

D

`(e^(x))/(1+loga)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int e^(x log a) e^(x) dx is equal to

int e^(x)dx is equal to

int a^(x)e^(x)dx" is equal to "

(2) int(1)/(e^(x)+e^(-x))dx is equal to

int(e^x)/(e^(x)+1)dx" is equal to "

int(1+x)/(x+e^(-x))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int x^(3)e^(x^(2))dx is equal to

The value of int(x-1)e^(-x) dx is equal to