Home
Class 12
MATHS
If intf(x)dx=f(x)+c," then " f(x)=...

If `intf(x)dx=f(x)+c," then " f(x)=`

A

`x^( e)`

B

`e^( x)`

C

`log|x|`

D

`(1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given that: \[ \int f(x) \, dx = f(x) + c \] ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \int f(x) \, dx = f(x) + c \] 2. **Differentiate both sides with respect to \( x \):** \[ \frac{d}{dx} \left( \int f(x) \, dx \right) = \frac{d}{dx} (f(x) + c) \] 3. **Apply the Fundamental Theorem of Calculus on the left side:** \[ f(x) = f'(x) + 0 \] (since the derivative of a constant \( c \) is 0) 4. **Rearranging the equation gives:** \[ f'(x) = f(x) \] 5. **This is a first-order linear differential equation. The general solution to this equation is:** \[ f(x) = Ce^x \] where \( C \) is a constant. 6. **To find a specific solution, we can assume \( C = 1 \) (as the problem does not specify any particular initial condition):** \[ f(x) = e^x \] ### Conclusion: Thus, the function \( f(x) \) is: \[ f(x) = e^x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

If int g(x)dx=f(x) , then : intf(x).g(x)dx=

If intf(x)dx=2[f(x)]^(3)+c , then f(x) can be

If intf(x)dx=F(x), then int(f(x))/(F'(x))dx=

If intf(x)dx=g(x), then : intf^(-1)(x)dx=

If intf(x)dx=g(x), then intf(x)g(x)dx is equal to

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is