Home
Class 12
MATHS
If D=diag [2, 3, 4], then D^(-1)=...

If `D=diag [2, 3, 4]`, then `D^(-1)=`

A

O

B

I

C

D

D

diag `[(1)/(2), (1)/(3), (1)/(4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the diagonal matrix \( D = \text{diag}[2, 3, 4] \), we can follow these steps: ### Step 1: Understand the Structure of the Diagonal Matrix The diagonal matrix \( D \) can be represented as: \[ D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( D \) For a diagonal matrix, the determinant is the product of its diagonal elements: \[ \text{det}(D) = 2 \times 3 \times 4 = 24 \] ### Step 3: Check if the Inverse Exists Since the determinant \( \text{det}(D) \) is not equal to zero, the inverse of \( D \) exists. ### Step 4: Find the Inverse of the Diagonal Matrix The inverse of a diagonal matrix is obtained by taking the reciprocal of each of its diagonal elements: \[ D^{-1} = \text{diag}\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right] \] This can be represented as: \[ D^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix} \] ### Final Result Thus, the inverse of the matrix \( D \) is: \[ D^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A= diag (1,4,5) then A^(-1) is equal to

Statement 1: if D=diag[d_(1),d_(2),,d_(n)], then D^(-1)=diag[d_(1)^(-1),d_(2)^(-1),...,d_(n)^(-1)] Statement 2: if D=diag[d_(1),d_(2),,d_(n)], then D^(n)=diag[d_(1)^(n),d_(2)^(n),...,d_(n)^(n)]

If D=diag(d_1,d_2,d_3,…,d_n)" where "d ne 0" for all " I = 1,2,…,n," then " D^(-1) is equal to

If D=diag[d_(1),d_(2),...d_(n)], then prove that f(D)=diag[f(d_(1)),f(d_(2)),...,f(d_(n))], where f(x) is a polynomial with scalar coefficient.

if A =diag[2 -3 4], B= diag[3 1 -2 )and C= diag[-1 2 2] then find 2A-B+3C.

If A = diag (4, 2, 1) then det A is equal to

If A=diag(2,-1,3), B=diag(-1,3,2)then A^(2)B

TARGET PUBLICATION-MATRICES-CRITICAL THINKING ( 2. 1 Elementary Transformations)
  1. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  2. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  3. If A=[(a,b),(c,d)], then adj(adjA) is equal to

    Text Solution

    |

  4. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  5. The inverse of the matrix A[(1,1,1),(6,7,8),(6,7,-8)] using adjoint me...

    Text Solution

    |

  6. If D=diag [2, 3, 4], then D^(-1)=

    Text Solution

    |

  7. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  8. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  9. If product of matrix A with [(0,1),(2,-4)] is [(3,2),(1,1)] , then A^(...

    Text Solution

    |

  10. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  11. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a m...

    Text Solution

    |

  12. If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]then (P...

    Text Solution

    |

  13. If A=[(2,3),(1,-2)] and A^(-1)=alphaA, then alpha is equal to

    Text Solution

    |

  14. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |

  15. Show that A=[(5,3),(-1,-2)] satisfies the equation x^2-3x-7=0 . Thus, ...

    Text Solution

    |

  16. If [(x,1),(1,0)] and A^(2)=I, then A^(-1) is equal to

    Text Solution

    |

  17. If A and B are square matrices of the same order and AB=3I then A^(-1)...

    Text Solution

    |

  18. A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1)=

    Text Solution

    |

  19. If A is a square matrix such that |A| ne 0 and m, n (ne 0) are scalars...

    Text Solution

    |

  20. If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0, then A^(-1) equals

    Text Solution

    |