Home
Class 12
MATHS
Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, ...

`Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):}`
`f(g(x))` is

A

discontinuous at `x=pi//4`

B

differentiable at `x=pi //4`

C

continuous but non - differentiable `x= pi//4`

D

differentiable at` x=pi//4` , but derivative is not continuous

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(g(x)) \), we need to evaluate the composite function using the definitions of \( f(x) \) and \( g(x) \). ### Step 1: Define the functions The functions are defined as follows: 1. \( f(x) = \begin{cases} x + 2 & \text{for } 0 \leq x < 2 \\ 6 - x & \text{for } x \geq 2 \end{cases} \) 2. \( g(x) = \begin{cases} 1 + \tan x & \text{for } 0 \leq x < \frac{\pi}{4} \\ 3 - \cot x & \text{for } \frac{\pi}{4} \leq x < \pi \end{cases} \) ### Step 2: Evaluate \( g(x) \) We will evaluate \( g(x) \) for two intervals: - For \( 0 \leq x < \frac{\pi}{4} \): \[ g(x) = 1 + \tan x \] - For \( \frac{\pi}{4} \leq x < \pi \): \[ g(x) = 3 - \cot x \] ### Step 3: Determine the range of \( g(x) \) 1. For \( 0 \leq x < \frac{\pi}{4} \): - As \( x \) approaches \( 0 \), \( g(0) = 1 + \tan(0) = 1 \). - As \( x \) approaches \( \frac{\pi}{4} \), \( g\left(\frac{\pi}{4}\right) = 1 + \tan\left(\frac{\pi}{4}\right) = 1 + 1 = 2 \). - Therefore, \( g(x) \) ranges from \( 1 \) to \( 2 \). 2. For \( \frac{\pi}{4} \leq x < \pi \): - At \( x = \frac{\pi}{4} \), \( g\left(\frac{\pi}{4}\right) = 3 - \cot\left(\frac{\pi}{4}\right) = 3 - 1 = 2 \). - As \( x \) approaches \( \pi \), \( g(x) \) approaches \( 3 - 0 = 3 \). - Therefore, \( g(x) \) ranges from \( 2 \) to \( 3 \). Combining both intervals, we find that \( g(x) \) takes values in the interval \( [1, 3) \). ### Step 4: Evaluate \( f(g(x)) \) Now we will evaluate \( f(g(x)) \) based on the ranges of \( g(x) \): 1. For \( 1 \leq g(x) < 2 \): - Here, \( f(g(x)) = g(x) + 2 \). - Therefore, \( f(g(x)) = (1 + \tan x) + 2 = 3 + \tan x \) for \( 0 \leq x < \frac{\pi}{4} \). 2. For \( 2 \leq g(x) < 3 \): - Here, \( f(g(x)) = 6 - g(x) \). - Therefore, \( f(g(x)) = 6 - (3 - \cot x) = 3 + \cot x \) for \( \frac{\pi}{4} \leq x < \pi \). ### Final Result Thus, we can summarize the result as follows: \[ f(g(x)) = \begin{cases} 3 + \tan x & \text{for } 0 \leq x < \frac{\pi}{4} \\ 3 + \cot x & \text{for } \frac{\pi}{4} \leq x < \pi \end{cases} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

f(x)={x+2, 0lt=x<2 and 6-x , xgeq2 and g(x)={1+tanx , 0 leq x lt pi/4 and 3-cotx , pi/4 leq x lt pi . find fog and discuss the continuity and differentiabillity of fog.

f(x) ={{:(,pi/2+x,x le (-pi)/(4)),(,tan x,(-pi)/(4) lt x lt pi/4),(,pi/2-x,x ge pi/4):} then: