Home
Class 12
MATHS
Let f(x) = lim( n to oo) ( x^(2n-1)+ax^...

Let `f(x) = lim_( n to oo) ( x^(2n-1)+ax^(2)+bx)/(x^(2n+1))`, if f(x) is continuous for all` x in R.` then the value of a+ 8b i s______.

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

Let f(x)=lim_( n to oo) (x^(2n-1) + ax^2 +bx)/(x^(2n) +1) . If f is continuous for x in R , then the value of a+8b is

Let f(x)=lim_(n rarr oo)(sin x)^(2n)

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

Let f(x)=lim_(n to oo) sinx/(1+(2 sin x)^(2n)) then f is discontinuous at

Let f (x) =x ^(2) +ax+3 and g (x) =x+b, where F (x) =lim _(xto oo) (f(x) +(x^(2))g (x))/(1+(x ^(2))^(n)). If F (x) is continous at x=1 and x=-1 then find the value of (a^(2) +b ^(2))