Home
Class 11
MATHS
sin A sin (A+ 2B) –sin B sin (2A +B) = s...

`sin A sin (A+ 2B) –sin B sin (2A +B) = sin (A-B) sin (A-B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin A sin (A + 2B) sin B sin (B + 2A) = sin (AB) sin (A + B)

sin A sin (A + 2B) -sin B sin (B + 2A) = sin (AB) sin (A + B)

sin 2A + sin 2B + sin 2 (A-B)= A) 4 sin A * sin B * sin (A-B) B) 4 sin A * cos B * cos (A-B) C) 4 cos A * sin B * cos (A-B) D) 4 cos A * cos B * sin (A-B)

Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

(sin2A + sin2B + sin2C) / (sin A + sin B + sin C) = 8sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

Simplify: sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin(A + B) sin (A - B)

Simplify: sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin(A + B) sin (A - B)

Prove that sin ( A + B) sin (A - B) = sin^(2) A - sin^(2)B .

Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0

(sin (AC) + 2sin A + sin (A + C)) / (sin (BC) + 2sin B + sin (B + C)) is