Home
Class 11
MATHS
[,=abc(a-b)(b-c)],[,|[x,y,z],[x^(2),y^(2...

[,=abc(a-b)(b-c)],[,|[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|]

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

factorise: det[[x,y,zx^(2),y^(2),z^(2)yz,zx,xy]]

Factorise : |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

|[yz,x,x^(2)],[zx,y,y^(2)],[xy,z,z^(2)]|=|[1,x^(2),x^(3)],[1,y^(2),y^(3)],[1,z^(2),z^(3)]|

Prove that |[yz-x^2,zx-y^2,xy-z^2],[zx-y^2,xy-z^2,yz-x^2],[xy-z^2,yz-x^2,zx-y^2]| is divisible by (x+y+z), and hence find the quotient.

Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.

If ax+cy+bz=X, cx+by+az=Y, bx+ay+cz=Z, show that (a^(2)+b^(2)+c^(2)-bc-ca-ab)(x^(2)+y^(2)+z^(2)-yz-zx-xy)=X^(2)+Y^(2)+Z^(2)-YZ-ZX-XY