Home
Class 12
MATHS
For non-singular square matrix A ,\ B...

For non-singular square matrix `A ,\ B\ a n d\ C` of the same order `(A B^(-1)C)^(-1)=` `A^(-1)B C^(-1)` (b) `C^(-1)B^(-1)A^(-1)` (c) `C B A^(-1)` (d) `C^(-1)\ B\ A^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For non-singular square matrix A ,\ B\ a n d\ C of the same order then, (A B^(-1)C)^(-1)= (a) A^(-1)B C^(-1) (b) C^(-1)B^(-1)A^(-1) (c) C B A^(-1) (d) C^(-1)\ B\ A^(-1)

If the matrices A, B (A + B) are non - singular, then [A(A+B)^(-1) B]^(-1) . a) A^(-1)B^(-1) b) B^(-1)+A^(-1) c) B^(-1)A^(-1) d)None of these

Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

If the two matrices A,B,(A+B) are non-singular (where A and B are of the same order),then (A(A+B)^(-1)B)^(-1) is equal to (A)A+B(B)A^(-1)+B^(-1)(C)(A+B)^(-1)(D)AB

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If B and C are non-singular matrices and O is null matrix, then show that [[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot

If B and C are non-singular matrices and O is null matrix, then show that [[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot

If B and C are non-singular matrices and O is null matrix, then show that [[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot

If B and C are non-singular matrices and O is null matrix, then show that [[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot