Home
Class 12
MATHS
If A, B , C are angles in a triangle, th...

If `A, B , C` are angles in a triangle, then the `sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C`

Text Solution

Verified by Experts

The correct Answer is:
`2sinAsinBsinC = R.H.S`
Promotional Banner

Topper's Solved these Questions

  • SOLVED MODEL PAPER-2

    SRISIRI PUBLICATION|Exercise SOLVED MODEL PAPER-2(MATHS-1B)|24 Videos
  • SOLVED MODEL PAPER-2

    SRISIRI PUBLICATION|Exercise Section B|7 Videos
  • SOLVED MODEL PAPER-1

    SRISIRI PUBLICATION|Exercise SOLVED MODEL PAPER-1(MATHS-1B)|23 Videos
  • SOLVED MODEL PAPER-3

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos

Similar Questions

Explore conceptually related problems

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A, B, C are angles in a triangle , then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

If A, B, C are angles of a triangle, then S. T sin 2A -sin 2B + sin 2C=4 CosA sin B CosC

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If sin ^(2) A+ sin ^(2) B + sin ^(2) C then angle C =

b^(2) sin 2C + C^(2) sin 2B = 2 b sin A

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)