Home
Class 10
MATHS
" 2i) "(1-cos^(2)theta)cosec^(2)theta=1...

" 2i) "(1-cos^(2)theta)cosec^(2)theta=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove each of the following identities : (i) (1- cos^(2) theta) "cosec"^(2) theta =1 " " (ii) (1+ cot^(2) theta) sin^(2) theta =1

Prove each of the following identities : (i) (sec^(2) theta -1) cot^(2) theta =1 " " (ii) (sec^(2) theta -1) ("cosec"^(2)theta -1) =1 (iii) (1- cos^(2) theta )sec^(2) theta = tan^(2) theta

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

The value of (1+ cos theta)(1- cos theta) "cosec"^(2) theta =

If l cos^(2) theta + m sin^(2) theta = (cos^(2) theta ("cosec"^(2) theta+1)/("cosec"^(2) theta -1)) then what is the value of tan^(2) theta .

(tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

Prove the Identity (tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)

If 1/(sin^(2)theta)-1/(cos^(2) theta)-1/(tan^(2)theta)-1/(cot^(2)theta)-1/(sec^(2)theta)-1/(cosec^(2)theta)=-3 then find the value of theta .