Home
Class 12
MATHS
The LPP problem Max z=x(1)+x(2) such tha...

The LPP problem Max `z=x_(1)+x_(2)` such that `-2x_(1)+x_(2)le1,x_(1)le2,x_(1)+x_(2)le3 and x_(1),x_(2)ge0` has

A

One solution

B

Three solutions

C

Infinite number of solutions

D

No solution

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Competitive Thinking|35 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos

Similar Questions

Explore conceptually related problems

The objective function, z=4x_(1)+5x_(2), subject to 2x_(1)+x_(2)ge7,2x_(1)+3x_(2)le15,x_(2)le3,x_(1),x_(2)ge0 has minimum value at the point

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

Minimize z = -x_(1) + 2x_(2) Subject to -x_(1) + 3x_(2) le 10 x_(1) + x_(2) le 6 x_(1) - x_(2) le 2 and x_(1), x_(2) ge 0

Maximize z = x_(1) + 3x_(2) Subject to 3x_(1) + 6x_(2) le 8 5x_(1) + 2x_(2) le 10 and x_(1), x_(2) ge 0

The objective function Z=4x_(1) +5x_(2) , Subject to 2x_(1) +x_(2) ge 7,2x_(1)+3x_(2) le 15,x_(2)le 3, x_(1),x_(2)ge 0 has minimum value at the point

Maximize z = 5x_(1) + 3x_(2) Subject to 3x_(1) + 5x_(2) le 15 5x_(1) + 2x_(2) le 10 x_(1), x_(2) ge 0

By graphical method, the solutions of linear programming problem maximise Z=3x_(1)+5x_(2) subject to constraints 3x_(1)+2x_(2) le 18, x_(1) le 4, x_(2) le 6 x_(1) ge0,x_(2) ge 0 are

For L.P.P. maximize z = 4x_(1) + 2X_(2) subject to 3x_(1) + 2x_(2) ge 9, x_(1) - x_(2) le 3,x_(1) ge 0, x_(2) ge 0 has ……

The linear programming problem : Maximize z=z=x_(1)+x_(2) subject to constraints x_(1)+2x_(2)le2000,x_(1)+x_(2)le1500,x_(2)le600,x_(1)ge0 has