Home
Class 12
MATHS
The inverse of the matrix [[0, 1, 2], [1...

The inverse of the matrix `[[0, 1, 2], [1, 2, 3], [3, 1, 1]]` is

A

`(-1)/(2)[[-1, 1, -1], [8, -6, 2], [-5, 3, -1]]`

B

`(1)/(2)[[-1, 1, -1], [8, -6, 1], [-5, 3, -1]]`

C

`[[-1, 1, -1], [4, -3, 1], [-5, 3, -1]]`

D

`[[1, -1, 1], [-4, 3, -1], [4, -3, 1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: - \( a = 0, b = 1, c = 2 \) - \( d = 1, e = 2, f = 3 \) - \( g = 3, h = 1, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 0(2 \cdot 1 - 3 \cdot 1) - 1(1 \cdot 1 - 3 \cdot 2) + 2(1 \cdot 1 - 2 \cdot 3) \] \[ = 0 - 1(1 - 6) + 2(1 - 6) \] \[ = 0 - 1(-5) + 2(-5) \] \[ = 5 - 10 = -5 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = -5 \) (which is not equal to 0), the inverse of matrix \( A \) exists. ### Step 3: Calculate the Cofactor Matrix To find the cofactor matrix, we need to calculate the cofactor for each element of the matrix. 1. **Cofactor \( C_{1,1} \)**: \[ C_{1,1} = \text{det}\begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} = (2)(1) - (3)(1) = 2 - 3 = -1 \] 2. **Cofactor \( C_{1,2} \)**: \[ C_{1,2} = -\text{det}\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} = -((1)(1) - (3)(3)) = -(1 - 9) = 8 \] 3. **Cofactor \( C_{1,3} \)**: \[ C_{1,3} = \text{det}\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} = (1)(1) - (2)(3) = 1 - 6 = -5 \] 4. **Cofactor \( C_{2,1} \)**: \[ C_{2,1} = -\text{det}\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = -((1)(1) - (2)(1)) = -(1 - 2) = 1 \] 5. **Cofactor \( C_{2,2} \)**: \[ C_{2,2} = \text{det}\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} = (0)(1) - (2)(3) = 0 - 6 = -6 \] 6. **Cofactor \( C_{2,3} \)**: \[ C_{2,3} = -\text{det}\begin{bmatrix} 0 & 1 \\ 3 & 1 \end{bmatrix} = -((0)(1) - (1)(3)) = -(-3) = 3 \] 7. **Cofactor \( C_{3,1} \)**: \[ C_{3,1} = \text{det}\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = (1)(3) - (2)(2) = 3 - 4 = -1 \] 8. **Cofactor \( C_{3,2} \)**: \[ C_{3,2} = -\text{det}\begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix} = -((0)(3) - (2)(1)) = -(-2) = 2 \] 9. **Cofactor \( C_{3,3} \)**: \[ C_{3,3} = \text{det}\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} = (0)(2) - (1)(1) = 0 - 1 = -1 \] The cofactor matrix \( C \) is: \[ C = \begin{bmatrix} -1 & 8 & -5 \\ 1 & -6 & 3 \\ -1 & 2 & -1 \end{bmatrix} \] ### Step 4: Transpose the Cofactor Matrix to Get the Adjoint Matrix The adjoint matrix \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} \] ### Step 5: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-5} \cdot \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} \] \[ = \begin{bmatrix} \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \\ -\frac{8}{5} & \frac{6}{5} & -\frac{2}{5} \\ 1 & -\frac{3}{5} & \frac{1}{5} \end{bmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \\ -\frac{8}{5} & \frac{6}{5} & -\frac{2}{5} \\ 1 & -\frac{3}{5} & \frac{1}{5} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  2. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  3. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  4. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  5. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  6. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  7. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  8. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |

  9. The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

    Text Solution

    |

  10. The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costhe...

    Text Solution

    |

  11. If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0,...

    Text Solution

    |

  12. Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, si...

    Text Solution

    |

  13. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  14. A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2...

    Text Solution

    |

  15. If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI...

    Text Solution

    |

  16. If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

    Text Solution

    |

  17. If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal ...

    Text Solution

    |

  18. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  19. If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B, t...

    Text Solution

    |

  20. If A=[[1, 0, 1], [0, 2, 3], [1, 2, 1]], b=[[1, 2, 3], [1, 1, 5], [2, 4...

    Text Solution

    |