Home
Class 12
MATHS
Find x if 9^(1//log(2)3) le log(2) x le ...

Find `x` if `9^(1//log_(2)3) le log_(2) x le log_(8) 27`

Text Solution

Verified by Experts

`9^(1//log_(2)3) = 9^(log_(3)2) = 3^(2 log_(3)2) = 3^(log_(3)4) = 4`
and `log_(8) 27 = log_((2^(3))(3^(3))) = (3)/(3)log_(2) 3 = log_(2)3`
Hence, by the given relation we may write that
`4 le log_(2) x le log_(2) 3 rArr 16 le x le 2^(log_(2)3)`
`rArr 16 le x le 3`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Try Yourself|70 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - A) Objective Type Questions (one option is correct)|102 Videos
  • PROBABILITY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|13 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - J) Aakash Challengers|12 Videos

Similar Questions

Explore conceptually related problems

Solve 2 log_(3) x - 4 log_(x) 27 le 5 .

If 1/2 le log_(0.1) x le 2 , then

Evaluate: log_(9)27 - log_(27)9

log_(3) (log_(9)x + 1/2 + 9^(x)) = 2x

Solve log_(3)(x-2) le 2 .

Solve for x: log_(2)x le 2/(log_(2)x-1)

Solve log_(0.2). (x+2)/x le 1 .

(1)/(log_(3)2)+(2)/(log_(9)4)-(3)/(log_(27)8)=0

Solve the following equation for x: 9^(log_(3)(log_(2)x))=log_(2)x-(log_(2)x)^(2)+1