Home
Class 12
MATHS
STATEMENT-1 : If g(x)=int(0)^(x)cos^(4)t...

STATEMENT-1 : If `g(x)=int_(0)^(x)cos^(4)t dt` then `g(x+pi)` is equal to `g(x)+g(pi)`
STATEMENT-2 : If `{x}` represents the fractional part of `x` then `int_(0)^(100){sqrt(x)}` is equal to `(2000)/(3)`
STATEMENT-3 : The value of `int_(-(1)/(2))^((1)/(2))(alphalog((1+x)/(1-x))+beta)dx` depends on the value of `beta`.

A

TFT

B

TTT

C

FFF

D

FFT

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Subjective Type Questions|13 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Aakash Challengers Questions|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Integar Type Questions|7 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals

Ifg(x)= int_(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals

If g(x) = int_(0)^(x) cos dt , then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

The value of int_(0)^((pi)/(2))(cos3x+1)/(cos x-1)dx is equal to