Home
Class 12
MATHS
" 2.If "g(x)=int(0)^(x)cos^(4)tdt," then...

" 2.If "g(x)=int_(0)^(x)cos^(4)tdt," then "g(x+pi)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)tdt , then g(x+pi) is equal to a) g(x)+g(pi) b) g(x)-g(pi) c) g(x).g(pi) d) (g(x))/(g(pi))

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

Ifg(x)= int_(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals

STATEMENT-1 : If g(x)=int_(0)^(x)cos^(4)t dt then g(x+pi) is equal to g(x)+g(pi) STATEMENT-2 : If {x} represents the fractional part of x then int_(0)^(100){sqrt(x)} is equal to (2000)/(3) STATEMENT-3 : The value of int_(-(1)/(2))^((1)/(2))(alphalog((1+x)/(1-x))+beta)dx depends on the value of beta .

If g(x)=int_(0)^(x)cos4tdt , then g(x+pi) equals-

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals