Home
Class 12
MATHS
Find the inverse using elementary row...

Find the inverse using elementary row transformations: `[0 1 2 1 2 3 3 1 1]`

Text Solution

AI Generated Solution

To find the inverse of the matrix \( A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} \) using elementary row transformations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to convert \( A \) into \( I \). The augmented matrix will look like this: \[ \left[ \begin{array}{ccc|ccc} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 1 & 1 & 0 & 0 & 1 \end{array} \right] ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Find the inverse using elementary row transformations: [-1 1 2 1 2 3 3 1 1]

Find the inverse using elementary row transformations: [3 10 2 7]

Find the inverse using elementary row transformations: [1 1 2 3 1 1 2 3 1]

Find the inverse using elementary row transformations: [1 2 0 2 3-1 1-1 3]

Find the inverse using elementary row transformations: [2-1 3 1 2 4 3 1 1]

Find the inverse using elementary row transformations: [2 3 1 2 4 1 3 7 2]

Find the inverse using elementary row transformations: [1 3-2-3 0 1 2 1 0]

Find the inverse using elementary row transformations: [3 0-1 2 3 0 0 4 1]

Find the inverse using elementary row transformations: [2 0-1 5 1 0 0 1 3]

Find the inverse using elementary row transformations: [2-1 4 4 0 2 3-2 7]