Home
Class 10
MATHS
(3i)(3+sqrt(3))(3-sqrt(3))...

(3i)(3+sqrt(3))(3-sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

((3+i sqrt(3))(3-i sqrt(3)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Simplify each of the following expressions: (i) (3+sqrt(3))(2+sqrt(2)) (ii) (3+sqrt(3))(3-sqrt(3)) (iii) (sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))

Simplify the following expressions: (i) (3+sqrt(3))\ (3-sqrt(3)) (ii) (sqrt(5)-\ sqrt(2)\ )(sqrt(5)+sqrt(2))

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express the following expression in the form of a+ib((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express the following expression in the form of a+ib qquad ((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express each one of the following in the standard form a+ib:((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express the following expression in form of a+ib : ((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2) ( i ))-(sqrt(3)-i sqrt(2)))

Show that the complex numbers 3+3i , -3-3i(-3sqrt(3)+i3sqrt(3)) are the vertices of an equilateral triangle in the complex plane.

Prove that ((i-sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200)=-1