Home
Class 12
MATHS
D(1)=|[1,1,1],[1,omega,omega^(2)],[1,ome...

D_(1)=|[1,1,1],[1,omega,omega^(2)],[1,omega^(2),omega]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let , /_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega,omega^4]| where omega ne 1 is a complex number such that omega^3 = 1 , then /_\ =

If omega is a cube root of unity and A=[(1,1,1),(1,omega,omega^(2)),(1,omega^(2),omega)] , then A^(-1) equal to

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1-omega^2,-omega^2],[1, omega^2,omega^4]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

{[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)] + [(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1)]} [(1),(omega),(omega^(2))]

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)