Home
Class 12
MATHS
f(x)={[|x|cos(1)/(x)*y^(x!=0)],[0quad ,x...

f(x)={[|x|cos(1)/(x)*y^(x!=0)],[0quad ,x=0]quad " at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the continuity of f(x)={|x|cos(1/x),\ \ \ x!=0 0,\ \ \ \ x=0 at x=0

Examine the continuity of a function f(x)={{:(|x|"cos"(1)/(x)", if "x!=0),(0", if "x=0):} at x=0 .

The function f(x)=x cos((1)/(x^(2))) for x!=0,f(0)=1 then at x=0,f(x) is

Let f(x)={x^(2)|(cos)(pi)/(x)|,x!=0 and 0,x=0,x in R then f is

If the function f(x)={[(cos x)^((1)/(x)),x!=0k,x=0k,x=0]} is continuos at x=0 then the value of k]}

f (x) = x cos ((1)/(x^(2))), x in 0 , f (0) = 1 at x = 0 f is

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .