Home
Class 10
MATHS
In AD bot BC, prove that AB^(2)+CD^(2)=B...

In `AD bot BC`, prove that `AB^(2)+CD^(2)=BD^(2)+AC^(2)`

Promotional Banner

Topper's Solved these Questions

  • GEOMETRY

    SURA PUBLICATION|Exercise Unit Test (Section -A)|5 Videos
  • GEOMETRY

    SURA PUBLICATION|Exercise Unit Test (Section -B)|7 Videos
  • GEOMETRY

    SURA PUBLICATION|Exercise Government Exam Questions|9 Videos
  • CREATIVE QUESTION SET

    SURA PUBLICATION|Exercise Multiple Choice Question|120 Videos
  • GOVT. MODEL QUESTION PAPER-2019-20

    SURA PUBLICATION|Exercise Part-IV|6 Videos

Similar Questions

Explore conceptually related problems

In the given fig. if AD bot BC Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2) .

In adjoining figure, seg AD bot side BC, B-D-C. Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2)

In angle ACD=90^(@) and CD bot AB . Prove that (BC^(2))/(AC^(2))=(BD)/(AD)

In squareABCD is a quadrilateral. M is the midpoint of diagonal AC and N is the midpoint of diagonal BD. Prove that : AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)=AC^(2)+BD^(2)+4MN^(2).

In Delta ABC, "seg" AD bot "seg" BC, DB = 3CD . Prove that: 2 AB^(2) = 2AC^(2) + BC^(2)

In the adjoining figure, seg BD bot "side" AC, C-D-A. "Prove that" : AB^(2) = BC^(2) + AC^(2) - BC.AC

ABC is a right triangle , right angled at A and D is the mid point of AB . Prove that BC^(2) =CD^2 +3BD^(2) .

The perpendicular from A on side BC at a Delta ABC intersects BC at D such that DB=3 CD. Prove that 2 AB^(2)=2AC^(2)+BC^(2)

D is the mid point of side BC and AE bot BC . If BC=a, AC= b, AB=c, ED=x, AD=p and AE=h, prove that (i) b^(2)=p^(2)+ax+(a^(2))/(4) (ii) c^(2)=p^(2)-ax+(a^(2))/(4) (iii) b^(2)+c^(2)=2p^(2)+(a^(2))/(2)

In the adjacent figure, ABC is a right angled triangle with right angle at B and points D, E trisect BC. Prove that 8AE^(2)=3AC^(2)+5AD^(2).