Home
Class 10
PHYSICS
A horse has to pull harder during the st...

A horse has to pull harder during the start of the motion than later . Explain .

Text Solution

Verified by Experts

To start motion in body we must apply force to overcome static friction `(F_(s)=mu_(s) "mg")` When once motion is started between the bodies then kinetic frictional force comes into act . Kinetic friction `(F_(k)=mu_(k) "mg")` is always less than static friction . So it is tough to start a body from rest than to keep it in motion .
Promotional Banner

Topper's Solved these Questions

  • LAWS OF MOTION

    VGS PUBLICATION-BRILLIANT|Exercise SHORT ANSWER QUESTIONS|8 Videos
  • LAWS OF MOTION

    VGS PUBLICATION-BRILLIANT|Exercise LONG ANSWER QUESTIONS|3 Videos
  • LAWS OF MOTION

    VGS PUBLICATION-BRILLIANT|Exercise LONG ANSWER QUESTIONS|3 Videos
  • LAWA OF MOTION

    VGS PUBLICATION-BRILLIANT|Exercise ADDITIONAL PROBLEMS|22 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    VGS PUBLICATION-BRILLIANT|Exercise LONG ANSWER QUESTIONS|2 Videos

Similar Questions

Explore conceptually related problems

Consider the following A and B, and identify the correct choice in the given answers. A) For a body resting on a rough horizontal table, it is easier to pull at angle that push at the same angle to cause motion B) A body sliding down a rough inclined plane of inclination equal to angle of friction has nonzero acceleration

A myopic person has been using spectacles of power -1.0 dioptre for distant vision. During old age he also needs to use separate reading glass of power +0.2 dioptres. Explain what may have happened.

An orbital is designated by certain values of first three quantum numbers (n, l and m) and according to Pauli.s exclusion principle, no two electrons in a atom can have all the for quantum numbers equal. N, l and m denote size, shape and orientation of the orbital. The permissible values of n are 1,2,3.... prop while that of 1 are all possible integral values from 0 to n-n. Orbitals with same values of n and 1 but different values of m (where m can have any integral values from 1 to +1 including zero) are of equal energy and are called degenerate orbitals. However degeneracy is destroyed in homogeneous external magnetic field due to different extent of interaction between the applied field and internal electronic magnet of different orbitals differing in orientations. In octahedral magnetic field external magnetic field as oriented along axes while in tetrahedral field the applied field actas more in between the axes than that on the axes themselves. For 1=0, 1,2,3,...., the states (called sub-shells) are denoted by the symbol s,p,d,f.....respectively. After f, the subshells are denoted by letters alphabetically 1 determines orbital angular motion (L) of electron as L = sqrt(l(l+1))(h)/(2pi) ON the other hand, m determines Z-component of orbital angular momentum as L_(Z) = m((h)/(2pi)) Hund.s rule states that in degenerate orbitals electrons do not pair up unless and until each each orbitals has got an electron with parallesl spins Besides orbital motion,an electron also posses spin-motion. Spin may be clockwise and anticloskwise. Both these spin motions are called two spins states of electrons characterized by spin Q.N (s) : s = +(1)/(2) and = -(1)/(2) respectively The sum of spin Q.N. of all the electrons is called total spin(s) and 2s+1 is called spin multiplicity of the configuration as a whole. The spin angular momentum of an electron is written as L_(s) = sqrt(s(s+1))(h)/(2pi) According to Hund.s rule, the distribution of electron within the various orbitals of a given sub-shell is one which is associated with

An orbital is designated by certain values of first three quantum numbers (n, l and m) and according to Pauli.s exclusion principle, no two electrons in a atom can have all the for quantum numbers equal. N, l and m denote size, shape and orientation of the orbital. The permissible values of n are 1,2,3.... prop while that of 1 are all possible integral values from 0 to n-n. Orbitals with same values of n and 1 but different values of m (where m can have any integral values from 1 to +1 including zero) are of equal energy and are called degenerate orbitals. However degeneracy is destroyed in homogeneous external magnetic field due to different extent of interaction between the applied field and internal electronic magnet of different orbitals differing in orientations. In octahedral magnetic field external magnetic field as oriented along axes while in tetrahedral field the applied field actas more in between the axes than that on the axes themselves. For 1=0, 1,2,3,...., the states (called sub-shells) are denoted by the symbol s,p,d,f.....respectively. After f, the subshells are denoted by letters alphabetically 1 determines orbital angular motion (L) of electron as L = sqrt(l(l+1))(h)/(2pi) ON the other hand, m determines Z-component of orbital angular momentum as L_(Z) = m((h)/(2pi)) Hund.s rule states that in degenerate orbitals electrons do not pair up unless and until each each orbitals has got an electron with parallesl spins Besides orbital motion,an electron also posses spin-motion. Spin may be clockwise and anticloskwise. Both these spin motions are called two spins states of electrons characterized by spin Q.N (s) : s = +(1)/(2) and = -(1)/(2) respectively The sum of spin Q.N. of all the electrons is called total spin(s) and 2s+1 is called spin multiplicity of the configuration as a whole. The spin angular momentum of an electron is written as L_(s) = sqrt(s(s+1))(h)/(2pi) The orbital angular momentum of electron (l=1) makes an angles of 45^(@) from Z-axis. The L_(z) of electron will be