Home
Class 11
MATHS
sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)...

`sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)`

Text Solution

Verified by Experts

The correct Answer is:
RHS

NA
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SUBHASH PUBLICATION|Exercise Alternate Methods|12 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

Statement-1 : (sin(A+B)+sin(A-B))/(cos(A+B)+cos(A-B))=tanA Statement-2 : sin(A+B)+sin(A-B)=sinA and cos(A+B)+cos(A-B)=cosA .

If xsina+ysin2a+zsin3a=sin4a , xsinb+ysin2b+zsin3b=sin4b , xsinc+ysin2c+zsin3c=sin4c , then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are (a) sina ,sinb ,sinc (b) cosa ,cosb ,cosc (c) sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c

(sinA-sinB)/(sinA+sinB)=tan((A-B)/2).cot((A+B)/2)

(sinA-sinB)/(sinA+sinB)=tan((A-B)/2).cot((A+B)/2)

sin(A-B)=sinA cos B-cosA sinB

(sin3A)/(sinA)-(cos3A)/(cosA)=2

Prove that: (sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = (2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2 cos^(2)A) .

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B