Home
Class 12
MATHS
d/(dx)(x^(2) + cosx)^(4) =...

`d/(dx)(x^(2) + cosx)^(4)` =

A

`4(x^(2) + cos x)(2x - sin x)`

B

`4(x^(2) - cos x)^(3)(2x - sin x)`

C

`4(x^(2) + cos x)^(3)(2x - sin x)`

D

`4(x^(2) + cos x)^(3)(2x + sin x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (x^2 + \cos x)^4 \) with respect to \( x \), we will use the chain rule. Here are the steps: ### Step 1: Identify the outer and inner functions Let \( u = x^2 + \cos x \). Then, we can rewrite \( y \) as: \[ y = u^4 \] ### Step 2: Differentiate the outer function Using the chain rule, the derivative of \( y \) with respect to \( u \) is: \[ \frac{dy}{du} = 4u^3 \] ### Step 3: Differentiate the inner function Now, we need to differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = \frac{d}{dx}(x^2 + \cos x) = 2x - \sin x \] ### Step 4: Apply the chain rule Now, we can apply the chain rule to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 4u^3 \cdot (2x - \sin x) \] ### Step 5: Substitute back for \( u \) Substituting back \( u = x^2 + \cos x \): \[ \frac{dy}{dx} = 4(x^2 + \cos x)^3 \cdot (2x - \sin x) \] ### Final Answer Thus, the derivative of \( y = (x^2 + \cos x)^4 \) with respect to \( x \) is: \[ \frac{dy}{dx} = 4(x^2 + \cos x)^3 (2x - \sin x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)=(-2x^(2)) =

(d)/(dx)(x^(x))=?

(d)/(dx)(3x^(2)+2x)=

(d)/(dx)sin^(2)x

(d)/(dx)((x^(2))/(x-1))=

(d)/(dx)(x^((1)/(x)))

(d)/(dx)sin(x^(x))

d/(dx)(x^(4x^(3))) =

(d)/(dx)((7x^(2)-22x+4)/(x^(5)))=

(d)/(dx)(a^(x)+x^(a))=?

TARGET PUBLICATION-DIFFERENTIATION -EVALUATION TEST
  1. d/(dx)(x^(2) + cosx)^(4) =

    Text Solution

    |

  2. If f(x) = (x - 1)/(4) + ((x - 1)^(2))/(12) + ((x -1)^(5))/(20) + ((x -...

    Text Solution

    |

  3. If f(x)=(cosx+isinx)(cos3x+isin3x)...(cos(2n-1)x+isin(2n-1)x) then f"(...

    Text Solution

    |

  4. If y=f((3x+pi)/(5x+4)) and f'(x)=tan^2 x, then (dy)/(dx) at x=0 is

    Text Solution

    |

  5. If y=|cosx|+|sinx|, then (dy)/(dx)" at "x=(2pi)/(3) is

    Text Solution

    |

  6. If y = (1 + (2)/(x)) (1 + (2)/(x))(1 + (3)/(x))...(1 + (n)/(x)) x ...

    Text Solution

    |

  7. If f(x)=x/(1+|x|) for x in R, then f'(0) =

    Text Solution

    |

  8. If y=f((2x+3)/(3-2x)) and f(x)=sin(logx), then (dy)/(dx)=

    Text Solution

    |

  9. d/(dx)[atan^(-1)x+blog((x-1)/(x+1))]=1/(x^4-1)=>a-2b=

    Text Solution

    |

  10. If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

    Text Solution

    |

  11. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  12. If 2x=y^(1/5)+y^(-1/5) then (x^2-1)(d^2y)/dx^2+xdy/dx=ky , then find t...

    Text Solution

    |

  13. if sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a > 0, (y(0) > 0) then y"(0) equa...

    Text Solution

    |

  14. If f(x), g(x), h(x) are polynomials in x of degree 2 If F(x)=|[f,g,h],...

    Text Solution

    |

  15. If y= cos ax and yn is n^(th) derivative of y, then |{:(y,y1,y2),(y3...

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  18. If the function f defined on R-{0} os a dIfferentiable function and f(...

    Text Solution

    |

  19. If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x), then the value ...

    Text Solution

    |

  20. If y=f(x^3),z=g(x^5),f'(x)=tanx and g'(x)=sec x, then (dy)/(dz)=

    Text Solution

    |

  21. If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),p rov et h a t(dy)/(dx)=(x^2)/(y...

    Text Solution

    |