Home
Class 12
MATHS
If x^(m) y^(n) =2(x+y)^(m+n), the value ...

If `x^(m) y^(n) =2(x+y)^(m+n)`, the value of `(dy)/(dx)` is

A

x+y

B

`x/y`

C

`y/x`

D

`x-y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^m y^n = 2(x+y)^{m+n} \) and find the value of \( \frac{dy}{dx} \), we will follow these steps: ### Step-by-Step Solution: 1. **Take the logarithm of both sides**: \[ \log(x^m y^n) = \log(2(x+y)^{m+n}) \] 2. **Apply the properties of logarithms**: Using the property \( \log(a \cdot b) = \log a + \log b \) and \( \log(a^b) = b \log a \): \[ m \log x + n \log y = \log 2 + (m+n) \log(x+y) \] 3. **Differentiate both sides with respect to \( x \)**: \[ \frac{d}{dx}(m \log x + n \log y) = \frac{d}{dx}(\log 2 + (m+n) \log(x+y)) \] The left side becomes: \[ \frac{m}{x} + n \frac{dy}{dx} \cdot \frac{1}{y} \] The right side becomes: \[ 0 + (m+n) \cdot \frac{1}{x+y} \cdot \left(1 + \frac{dy}{dx}\right) \] 4. **Set the derivatives equal**: \[ \frac{m}{x} + n \frac{dy}{dx} \cdot \frac{1}{y} = \frac{(m+n)}{x+y} \cdot (1 + \frac{dy}{dx}) \] 5. **Multiply through by \( xy(x+y) \) to eliminate denominators**: \[ m y (x+y) + n x \frac{dy}{dx} (x+y) = (m+n) y (1 + \frac{dy}{dx}) x \] 6. **Rearranging the equation**: \[ m y (x+y) = (m+n) y x + n x (x+y) \frac{dy}{dx} - (m+n) y x \frac{dy}{dx} \] Combine terms involving \( \frac{dy}{dx} \): \[ m y (x+y) - (m+n) y x = (n x (x+y) - (m+n) y x) \frac{dy}{dx} \] 7. **Solve for \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = \frac{m y (x+y) - (m+n) y x}{n x (x+y) - (m+n) y x} \] 8. **Simplifying the expression**: \[ \frac{dy}{dx} = \frac{m y (x+y) - (m+n) y x}{(n x - (m+n) y) x + n y x} \] ### Final Result: Thus, the value of \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{m y (x+y) - (m+n) y x}{n x (x+y) - (m+n) y x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If x^(m)y^(n)=(x+y)^(m+n)

If x^(m)y^(n)=(x+y)^(m+n), then ((dy)/(dx))_(x=1,y=2) is equal to

If x^(m)*y^(n)=(x+y)^(m+n)," then: "(dy)/(dx) is independent of

If x^(m)y^(n)=(x+y)^(m+n), then (dy)/(dx) is (x+y)/(xy) (b) xy (c) (x)/(y) (d) (y)/(x)

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), Prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)