Home
Class 12
MATHS
The integral int((pi)/(6))^((5 pi)/(6))...

The integral `int_((pi)/(6))^((5 pi)/(6))(dx)/(1+cos x)`is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The Integral int_((pi)/(4))^((3 pi)/(4))(dx)/(1+cos x) is equal to:

The Integral I=int_(pi/6)^((5pi)/6)(dx)/(1+cosx) is equal to:

If the value of the definite integral int_((pi)/(6))^((pi)/(4))(1+cot x)/(e^(x)sin x)dx, is equal to ae^(-(pi)/(6))+be^(-(pi)/(4)) then (a+b) equals

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Evaluate the definite integrals int_((pi)/(6))^((pi)/(3))(sin x+cos x)/(sqrt(sin2x))dx

The integral int_((pi)/(12))^((pi)/(4))(8cos2x)/((tan x+cot x)^(3))dx equals

The integral int_(0)^(pi/2)(dx)/(1+cos x) is equal to