Home
Class 12
MATHS
2.(C2)/(C1)+3.(C3)/(C2)+…...+n. (Cn)/(C(...

`2.(C_2)/(C_1)+3.(C_3)/(C_2)+…...+n. (C_n)/(C_(n-1))=`

A

`(2)/(n(n-1))`

B

`(n(n-1))/(2)`

C

`(2n)/(n+1)`

D

`(n+1)/(2n)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

k. C_0 + k^2 . (C_1)/(2)+k^3. (C_2)/(3)+…..+ k^(n+1). (C_n)/(n+1)=

C_0 + (C_1)/(2) + (C_2)/(2^2) + (C_3)/(2^3)+…..+(C_n)/(2^n)=

C_0-(C_1)/(2)+(C_2)/(3)-…...+(-1)^n (C_n)/(n+1)=

C_1 + 2. C_2 + 3. C_3 + …... + n. C_n=

Prove that (C_0 + C_1) (C_1 + C_2) …..(C_(n-1) + C_n) = ((n+1)^n)/(n!) (C_1.C_2.C_3……C_n)

Prove that (C_(0)+C_(1))(C_(1)+C_(2))(C_(2)+C_(3))....(C_(n-1)+C_(n))=((n+1)^(n))/(n!).C_(0).C_(1).C_(2).....C_(n).

DIPTI PUBLICATION ( AP EAMET)-BINOMIAL THEOREM-EXERCISE 1B (BINOMIAL COEFFICIENTS)
  1. k-^n C1 (k-1)+^n C2 (k-2)-…..+(-1)^n ""^n Cn (k-n)=

    Text Solution

    |

  2. (C1)/(C0)+2. (C2)/(C1)+3. (C3)/(C2)+….+n.(Cn)/(C(n-1))=

    Text Solution

    |

  3. 2.(C2)/(C1)+3.(C3)/(C2)+…...+n. (Cn)/(C(n-1))=

    Text Solution

    |

  4. (1 +x)^15 = a0 + a1x +…..+a15 x^15 rArr sum(r = 1)^15 r (ar)/(a(r - 1)...

    Text Solution

    |

  5. Prove that : If n is a positive integer, then prove that C(0)+(C(1))...

    Text Solution

    |

  6. C0-(C1)/(2)+(C2)/(3)-…...+(-1)^n (Cn)/(n+1)=

    Text Solution

    |

  7. (C0)/(1) + (C2)/(3) + (C4)/(5) + ……+(C16)/(17) =

    Text Solution

    |

  8. C0 + (C1)/(2) + (C2)/(2^2) + (C3)/(2^3)+…..+(Cn)/(2^n)=

    Text Solution

    |

  9. C3//4+C5//6+C7//8+….=

    Text Solution

    |

  10. C0+(C1 x)/(2)+(C2 x^2)/(3)+…...+(Cn x^n)/(n+1)=

    Text Solution

    |

  11. 2.C0 + (2^2)/(2).C1 + (2^3)/(3).C2 + ……+(2^11)/(11).C10 =

    Text Solution

    |

  12. k. C0 + k^2 . (C1)/(2)+k^3. (C2)/(3)+…..+ k^(n+1). (Cn)/(n+1)=

    Text Solution

    |

  13. 2. C0+ 2^2 (C1)/(2)+2^3. (C2)/(3)+…....+2^(n+1). (Cn)/(n+1)=

    Text Solution

    |

  14. (C0)/(2)+(C1)/(3)+(C2)/(4)+…...+(Cn)/(n+2)=

    Text Solution

    |

  15. The sum of (n+1) terms of the series (C0)/(2)-(C1)/(3)+(C2)/(4)-(C3)/(...

    Text Solution

    |

  16. (C0)/(2)+(C1)/(6)+(C2)/(12)+…..+ (Cn)/((n+1)(n+2))=

    Text Solution

    |

  17. Show that (2^(2) *C(0) )/(1*2)+(2^(3)*C(1))/(2*3)+(2^(4) *C(2))/(3*4)+...

    Text Solution

    |

  18. C0 C1+C1 C2 + C2 C3+…+ C(n-1) Cn=

    Text Solution

    |

  19. If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 C1 C2… Cn then k=

    Text Solution

    |

  20. If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =

    Text Solution

    |