Home
Class 12
MATHS
If [(x+y,y),(2x,x-y)][(2),(-1)]=[3/2] th...

If `[(x+y,y),(2x,x-y)][(2),(-1)]=[3/2]` then x.y is equal to :

A

`-5`

B

5

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equation involving matrices: Given: \[ \begin{pmatrix} x+y & y \\ 2x & x-y \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ 2 \end{pmatrix} \] ### Step 1: Perform Matrix Multiplication We will multiply the first matrix by the second matrix. The first element of the resulting matrix is calculated as: \[ (x+y) \cdot 2 + y \cdot (-1) = 2(x+y) - y \] The second element of the resulting matrix is calculated as: \[ 2x \cdot 2 + (x-y) \cdot (-1) = 4x - (x - y) = 4x - x + y = 3x + y \] So, we have: \[ \begin{pmatrix} 2(x+y) - y \\ 3x + y \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ 2 \end{pmatrix} \] ### Step 2: Set Up the Equations From the matrix multiplication, we can set up the following equations: 1. \( 2(x+y) - y = \frac{3}{2} \) 2. \( 3x + y = 2 \) ### Step 3: Simplify the First Equation Let's simplify the first equation: \[ 2(x+y) - y = \frac{3}{2} \] Expanding it gives: \[ 2x + 2y - y = \frac{3}{2} \] This simplifies to: \[ 2x + y = \frac{3}{2} \quad \text{(Equation 1)} \] ### Step 4: Use the Second Equation The second equation is: \[ 3x + y = 2 \quad \text{(Equation 2)} \] ### Step 5: Solve the System of Equations Now we have a system of equations: 1. \( 2x + y = \frac{3}{2} \) 2. \( 3x + y = 2 \) We can eliminate \(y\) by subtracting Equation 1 from Equation 2: \[ (3x + y) - (2x + y) = 2 - \frac{3}{2} \] This simplifies to: \[ 3x - 2x = 2 - \frac{3}{2} \] \[ x = 2 - \frac{3}{2} = \frac{4}{2} - \frac{3}{2} = \frac{1}{2} \] ### Step 6: Substitute Back to Find \(y\) Now substitute \(x = \frac{1}{2}\) back into either equation to find \(y\). We will use Equation 1: \[ 2\left(\frac{1}{2}\right) + y = \frac{3}{2} \] This simplifies to: \[ 1 + y = \frac{3}{2} \] Thus: \[ y = \frac{3}{2} - 1 = \frac{1}{2} \] ### Step 7: Calculate \(x \cdot y\) Now we have \(x = \frac{1}{2}\) and \(y = \frac{1}{2}\). Therefore: \[ x \cdot y = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \] ### Final Answer Thus, the value of \(x \cdot y\) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if (x)/(y)=(3)/(2) then (x+y)/(x-y) is equal to:

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

If P= (x^3+y^3)/((x-y)^2+3xy), Q= ((x+y)^2-3xy)/(x^3-y^3) and R=((x+y)^2+(x-y)^2)/(x^2-y^2) , then (P div Q) xx R is equal to: यदि P= (x^3+y^3)/((x-y)^2+3xy), Q= ((x+y)^2-3xy)/(x^3-y^3) तथा R=((x+y)^2+(x-y)^2)/(x^2-y^2) है, तो (P div Q) xx R का मान क्या होगा ?

If y=2|x-2|+3|x+1| then y_(min) is equal to

If y=f(x) is solution of differentiable equation (dy)/(dx)=y/x((1-3x^(2)y^(3)))/((2x^(2)y^(3)+1)) , then ( f(x).x)^(3) is equal to

If x^y = y^x and y = 2x then x is equal to :

If x^y = y^x and y = 2x , then x is equal to :

If f(2x+3y,2x-7y)=20x, then f(x,y) equals:

((2x + y)/(x + y) - 1) div (1 - y/(x + y)) is equal to :

If log_(5)(3^(x)-4^(y))=3 and 3^((x)/(2))-2^(y)=5, then (x)/(y) is equal to