Home
Class 13
MATHS
If alpha, beta are the non-real cube roo...

If `alpha, beta` are the non-real cube roots of 3 then `alpha^(6)+beta^(6)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the complex cube roots of unity then alpha^(100)+beta^(100)+(1)/(alpha^(100)xx beta^(100))=

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If alpha and beta are the complex cube roots of unity, then what is the vlaue of (1+alpha)(1+beta)(1+alpha^(2))(1+beta^(2)) ?

(i) If alpha,beta be the imaginary cube root of unity, then show that alpha^(4)+beta^(4)+alpha^(-1)beta^(-1)=0

If alpha,beta are the roots of ax^(2)+bx+c-0 then alpha beta^(2)+alpha^(2)beta+alpha beta=

If alpha,beta and 1 are the roots of x^(3)-2x^(2)-5x+6=0 then (alpha,beta)=

if alpha and beta are imaginary cube root of unity then prove (alpha)^(4)+(beta)^(4)+(alpha)^(-1)*(beta)^(-1)=0

If alpha,beta are the roots a^(x)-2bx+c=0 then alpha^(3)beta^(3)+alpha^(2)beta^(3)+beta^(2)alpha^(3)=