Home
Class 12
MATHS
tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)...

tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of order pair (s) (n,x) is (are)

if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of order pair (s) (n,x) is (are)

Solve for x:tan^(-1)3x+tan^(-1)2x=(pi)/(4)

Solve for x : tan^(-1)(x/2)+tan^(-1)(x/3)=pi/4 , 0

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x when tan^(-1)2x+tan^(-1)3x=n pi+(3 pi)/(4)

Directions (Q. Nos. 27 and 28) Solve the following equations: "tan"^(-1)x/(2)+"tan"^(-1)x/(3)=pi/(4),sqrt(6)gtxgt0