Home
Class 12
MATHS
If y=tan^(-1)((1+sin x)/(cos x))" shoe t...

If `y=tan^(-1)((1+sin x)/(cos x))" shoe that "(dy)/(dx)= (1)/(2)`.

Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER 3

    SUBHASH PUBLICATION|Exercise PART D|10 Videos
  • MODEL QUESTION PAPER 3

    SUBHASH PUBLICATION|Exercise PART E|4 Videos
  • MODEL QUESTION PAPER 3

    SUBHASH PUBLICATION|Exercise PART B|14 Videos
  • MODEL QUESTION PAPER 2

    SUBHASH PUBLICATION|Exercise PART E|3 Videos
  • MODEL QUESTION PAPER 4

    SUBHASH PUBLICATION|Exercise PART E|3 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1)((sin x)/(1+cos x)) find (dy)/(dx) .

If y = tan^(-1) sqrt((1+sin x)/(1-sinx)) , then dy/dx =

If y=tan^(-1)((sin x + cos x)/(cos x - sin x)) , then (dy)/(dx) is equal to

If y = tan^(-1)((sqrt(1 + x^2)-1)/(x)) , prove that (dx)/(dy) = 1/(2(1 + x^2))

If y = (cos x)^((cosx)^((cosx)^(-"to"oo) show that (dy)/(dx) = (cdot y^(2) tan x)/(y log cos x -1) .

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)

If y = tan^(-1) ((2x)/(1-x^(2))) then dy/dx =

If y = tan^(-1) ((x + a)/(1 - xa)), dy/dx=