Home
Class 11
MATHS
" If "f(x)" is continuous for all real v...

" If "f(x)" is continuous for all real values of "x" ,then "sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx" is equal to: "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If int_(0)^(10)f(x)dx=5 , then sum_(K=1)^(10) int_(0)^(1) f(K-1+x)dx is equal to

f(x) is a continuous function for all real values of x and satisfies int_(n+1)^(n+1)f(x)dx=(n^(2))/(2)AA n in I. Then int_(5)^(5)f(|x|)dx is equal to (19)/(2) (b) (35)/(2) (c) (17)/(2) (d) none of these

Q. if int_0^100(f(x) dx = a , then sum_(r=1)^100(int_0^1( f(r-1+x)dx)) =

Q. if int_0^100(f(x) dx = a , then sum_(r=1)^100(int_0^1( f(r-1+x)dx)) =