Home
Class 14
MATHS
" That "sin A=(3)/(4),cos(2cos A" Envelo...

" That "sin A=(3)/(4),cos(2cos A" Enveloped "pi" tan "A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (1+sin 2A)/(cos 2A) = (cos A + sin A)/(cos A - sin A) = tan (pi/4 + A)

Prove that (1+sin2A)/(cos2A)=(cos A+sin A)/(cos A-sin A)=tan((pi)/(4)+A)

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4

(1 + sin2A) / (cos2A) = (cos A + sin A) / (cos A-sin A) = tan ((pi) / (4) +1)

Prove that (i) "sin " (7pi)/(12) " cos " (pi)/(2) - "cos " *(7pi)/(12) " sin " (pi)/(4) = (sqrt(3))/(2) (ii) " sin " (pi)/(4) " cos " (pi)/(2) + "cos"(pi)/(4) " sin " (pi)/(12) = (sqrt(3))/(2) (iii) " cos " (2pi)/(3) " cos " (pi)/(4) - " sin " (2pi)/(3) " sin " (pi)/(4) =(-(sqrt(3) +1))/(2sqrt(2))

Prove that "sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)=(-1)/(2)

If sin 4 A - cos 2 A = cos 4 A - sin 2A (0 lt Alt (pi)/( 4)) then the value of tan 4A is

" 1.Prove that : "sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)

sin ^(2) " (pi)/(6) + cos ^(2) "" (pi)/(3) - tan ^(2) " (pi)/(4) =- 1/2

sin ^(2) " (pi)/(6) + cos ^(2) "" (pi)/(3) - tan ^(2) " (pi)/(4) =- 1/2