Home
Class 12
MATHS
[" PLE "13" If the straight line "x cos ...

[" PLE "13" If the straight line "x cos alpha+y sin alpha=p" touches the ellips "],[qquad " prove that "p^(2)=a^(2)cos^(2)alpha+b^(2)sin^(2)alpha.]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the straight line x cos alpha+y sin alpha=p touches the curve xy=a^(2), if p^(2)=4a^(2)cos alpha sin alpha

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha-b^(2)sin^(2)alpha=p^(2)

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha+b^(2)sin^(2)alpha=p^(2)

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha-b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot